Exercise & Type 1 Diabetes

Birmingham Women's & Childrens Hospital

Dietitians: John Pemberton
What today is about!

- Learning is doing and keeps you awake!
- Every person with T1DM is a n=1
- Guiding principles and starting algorithms not dogmatic rules
- CGM and exercise
- Use the good stuff and reference, do not re-invent the wheel
DH (2011) recommendations? Sport England interpretation

B. Final recommendations on physical activity guidelines for Children and Young People

<table>
<thead>
<tr>
<th>Recommendation 1</th>
<th>The UK guidelines on physical activity for children and young people should include a recommendation for physical activity in general, an overall guideline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation 2</td>
<td>The UK guidelines on physical activity for children and young people should recommend “daily physical activity”.</td>
</tr>
<tr>
<td>Recommendation 3</td>
<td>The UK guidelines on physical activity for children and young people should recommend at least 60 minutes of moderate to vigorous physical activity (MVPA) daily.</td>
</tr>
<tr>
<td>Recommendation 4</td>
<td>The UK guidelines for children and young people should include a specific recommendation for vigorous activity (≥6–7 METS) on at least 3 days a week.</td>
</tr>
</tbody>
</table>

Recommendation for supporting commentary
The commentary which accompanies the guidelines should indicate that vigorous intensity activity will form part of the daily 60 minute recommendation for children and young people.

| Recommendation 5 | The UK guidelines on physical activity for children and young people should recommend physical activity for the promotion of musculoskeletal health and flexibility at least 3 days per week. |

Table 3. The percentage of children meeting previous physical activity guidelines

<table>
<thead>
<tr>
<th>Country</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>England (aged 2–15)</td>
<td>32%</td>
<td>24%</td>
</tr>
<tr>
<td>Northern Ireland (Years 8–12)</td>
<td>19%</td>
<td>10%</td>
</tr>
<tr>
<td>Wales (aged 4–15)</td>
<td>63%</td>
<td>45%</td>
</tr>
<tr>
<td>Scotland (aged 2–15)</td>
<td>76%</td>
<td>67%</td>
</tr>
</tbody>
</table>
Two meta-analysis show 0.5% HbA1c improvement

Beneficial
- Fitness
- Insulin requirement
- Lipids
- Endothelial function
- Mortality
- Insulin resistance
- CVD
- Wellbeing

Uncertain / Limited data
- Microvascular complications
- Osteoporosis
- Cancer
- Beta cell function
- Blood pressure
- Glycaemic control

Beneficial
- Fitness
- Insulin requirement
- Lipids
- Endothelial function
- Mortality
- Blood pressure
- Beta cell function
- Glycaemic control

Uncertain / Limited data
- Microvascular complications
- Osteoporosis
- Cancer
- CVD
- Wellbeing

Riddle and Taplin (2016) Exercise in children with type 1 diabetes in A. Scaramuzza et al. (eds.), Research into Childhood-Onset Diabetes, DOI 10.1007/978-3-319-40242-0_7

A fantastic infographic
Weightlifting, Track cycling, Track (sprinting & field events), Diving (Platform & springboard)
American football, Swimming (sprints), Gymnastics, Fencing
Wrestling, Volleyball, Ice hockey, Tree/rock climbing,

Basketball, Soccer, Racquet sports, Lacrosse
Speed skating (500-1000m)
Skiing (slalom & downhill), Field hockey
Jumping rope, Rowing (middle distance)
Gymnastics, Martial arts, Horseback ridding
Running (middle distance), Games like tag

Skateboarding
Road cycling
In-line skating
Cross country skiing
Brisk walking
Marathon running
Triathlon
Aerobic / Continuous Exercise

Low to moderate intensity activity: walking, playing in the playground, jogging, shopping
What are your options for aerobic / continuous exercise?

12 year old boy – 50kg

Brisk walking to school 30 minutes morning after breakfast.

Brisk walking home after school 30 minutes

14 year old girl – 50kg

60 minutes swimming before breakfast
Anaerobic / Short Sharp Exercise

Very high intensity activity: sprinting, jumping, lifting weights, martial arts & gymnastics
What are your options for Supra-maximal exercise during activity?

17 year old boy – 60kg
Weights session after school 16:30, no meal before

14 year old girl – 50kg
60 minute sprint training session 18:00 after evening meal 17:00
Mixed / Intermittent Exercise

Glucose Trend T1D:

Lots of high intensity with little low intensity bursts, glucose is more likely to increase: Judo, sprint training, competitive football & netball, competition dancing, gymnastics.

or

Lots of low intensity with little high intensity bursts, glucose is more likely to decrease: school P.E recreational football & netball, bike riding, trampoline.
What are your options for intermittent exercise?

13 year old boy – 40kg

Football Match “Big Game” 60 minutes at 11:00, breakfast at 08:00

13 year old girl – 40kg

Netball after school practice 15:30 “easy practice” after school 60 minutes, last meal 12:30 - Lunch
Possible ‘Post exercise whip’ 0 - 60 minutes
Anaerobic HIIT Sprint finish

With thanks to Francesca Annan RD

- Adrenaline, Cortisol, Glucagon = “Glucose release & insulin resistance”
- Anaerobic or hard intermittent
- Disconnected pump
- Cool Down
Effect of exercise on blood glucose after activity

Exercise of 45 minutes or more keeps the side door open for up to 11 hours.
If Blood Glucose is...

Below 4
Treat hypo wait 15 mins before re checking and give follow up snack (10-15g carbohydrate) once BG above 4

Between 4-8
Give 10g of fast acting carbohydrate at the start of exercise such as 60mls Lucozade

Between 9-13
Do not give any fast acting carbohydrate before exercise (a small correction can be given - please discuss individual patients)

14+ check for Ketones
If Ketones are above 0.6, do not exercise
First 90 minutes peak insulin action
90-180 minutes moderate insulin action
>180 minutes low insulin action

For most consistent results
Remember the 3 hour exercise rule!
Studies on aerobic moderate intensity exercise and the reductions are likely to be less for intermittent and high intensity activities.
BWCH: Insulin reductions within 90 minutes of exercise

<table>
<thead>
<tr>
<th></th>
<th>Anaerobic Short-Sharp</th>
<th>Intermittent Mixed</th>
<th>Aerobic Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPE 3-5</td>
<td>N/A</td>
<td>-35%</td>
<td>-25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-50%</td>
</tr>
<tr>
<td>RPE 5-7</td>
<td>N/A</td>
<td>-25%</td>
<td>-35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-65%</td>
</tr>
<tr>
<td>RPE 7-10</td>
<td>N/A</td>
<td>-15%</td>
<td>-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-75%</td>
</tr>
</tbody>
</table>
Recommendations: Carbohydrate during activity

- Aerobic exercise extra carbohydrate:
 - If no adjustment to pre-meal insulin delivery has occurred:
 - 1.0g/kg of carbohydrate per kg per hour
 - Where pre-exercise insulin has been reduced
 - 0.5 g/kg of carbohydrate per hour

- Mixed / intermittent the carbohydrate requirement will be less.
 - If no adjustment to pre-meal insulin delivery has occurred:
 - 0.5 g of CHO per kg per hour
 - Where pre-exercise insulin has been reduced:
 - 0.25 g/kg per hour
Carbohydrate Requirement g/kg/hr (grams per kilogram per hour)

<table>
<thead>
<tr>
<th></th>
<th>Anaerobic Short-Sharp</th>
<th>Intermittent Mixed</th>
<th>Aerobic Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insulin reduction</td>
<td>No insulin reduction</td>
<td>Insulin reduction</td>
</tr>
<tr>
<td>RPE 3-5</td>
<td>0.075</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>RPE 5-7</td>
<td>0.125</td>
<td>0.15</td>
<td>0.225</td>
</tr>
<tr>
<td>RPE 7-10</td>
<td>0.15</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

BWCH: Carbohydrate during activity

If glucose in target
Recommendations: After exercise

- 50% of the usual correction dose for post-exercise hyperglycaemia and only if hyperglycaemia persists for >60 min post exercise.

- Activity >45min:
 - Reduce meal insulin after exercise 25-50%
 - lower the basal rate by 20% between 9 p.m. and 3 a.m.
 - 20g protein before bed (Increase Glucagon)
 - Carbohydrate snack before bed
Six Key questions

- Therapy: Pump or MDI?
- What type of activity will they be doing?
 - Aerobic/ Anaerobic/ Intermittent
- When eating and bolusing prior to activity?
 - Within 90 mins/ >90 minutes
- How long?
 - Minutes
- How intense will they be working out of 10?
 - Light: 3 – 5
 - Medium: 5 – 7
 - High: 7 – 10
- Are they eating after the activity?
- Live Example
CGM - it's the future!
Where Sensors and Meters Measure

Sensor measures interstitial glucose continuously

Meter

Meter measures blood glucose as a snap shot

Lag time: est. 10 minutes
Differences – blood glucose vs sensor glucose

Lag Time is about 10 minutes
Libre:

What do the arrows mean?

<table>
<thead>
<tr>
<th>Trend Arrow</th>
<th>Description</th>
<th>Where the blood glucose is now (10 minutes ahead)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>Rising quickly</td>
<td>2 mmol/l higher</td>
</tr>
<tr>
<td>←</td>
<td>Rising</td>
<td>1 mmol/l higher</td>
</tr>
<tr>
<td>→</td>
<td>Stable</td>
<td>Same</td>
</tr>
<tr>
<td>↓</td>
<td>Falling</td>
<td>1 mmol/l lower</td>
</tr>
<tr>
<td></td>
<td>Falling quickly</td>
<td>2 mmol/l lower</td>
</tr>
</tbody>
</table>
What's on offer?

<table>
<thead>
<tr>
<th>Medtronic 640G with smart guard and VEO with Low Glucose Suspend</th>
<th>Dexcom CGM G4</th>
<th>Dexcom CGM G5</th>
<th>Freestyle Libre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is an integrated system where insulin pump acts as a receiver of CGM data. The auto suspend feature helps in suspending the pump if glucose level hits a threshold (VEO) or is predicted to hit a threshold in the next 30 minutes (640G)</td>
<td>Continuous Glucose monitoring system which can be used alone or integrated with animas pump where CGM data can be viewed on the pump. A Newer version G5 is available in the market which is the first and only remote glucose monitoring system.</td>
<td>Continuous Glucose monitoring system which can be used alone. It can send data wirelessly to a compatible smart phone. It is FDA approved to make treatment decisions upon it’s results.</td>
<td>Flash glucose monitoring system. Monitor when scanned over transmitter gives the current sugar reading. It provides the glucose history for previous 8 hours</td>
</tr>
<tr>
<td>13.6%</td>
<td>13.0%</td>
<td>10% - Paediatrics</td>
<td>11.4%</td>
</tr>
<tr>
<td>Every 5 mins</td>
<td>Every 5 mins</td>
<td>Every 5 mins</td>
<td>Every second (when flashed)</td>
</tr>
<tr>
<td>Age 2 and above</td>
<td>Age 2 and above</td>
<td>Age 2 and above</td>
<td>Age 4 and above</td>
</tr>
<tr>
<td>6 days</td>
<td>7 days</td>
<td>7 days</td>
<td>14 days</td>
</tr>
</tbody>
</table>
Solutions to make CGM more reliable during exercise:

- Last meal insulin 3hrs before exercise – Check IOB???
- Set low alarm at 6.0mmol/l
- Hydrate effectively
- Set rate of change alarms: if goes off use BG not SG
 - 0.17mmol/l per min
 - 1.7mmol/l in 10 mins
 - One arrow down (Libre & Dexcom)
 - Two Arrows down (Medtronic)
- Sensor placed away from exercising muscle
<table>
<thead>
<tr>
<th>Medtronic Minimed 640G & VEO</th>
<th>Dexcom G4 & G5</th>
<th>Abbott Libre & Navigator</th>
<th>Change in glucose mmol/l in 15 minutes</th>
<th>Real life speak</th>
<th>SG 6.0 mmol/l expected SG range mmol/l in 15 minutes</th>
<th>SG 12mmol/l expected SG range mmol/l in 15 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
<td>0.0 - 0.8</td>
<td>Stable</td>
<td>5.2 - 6.8</td>
<td>11.2 - 12.8</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
<td>0.8 - 1.7</td>
<td>Falling slowly</td>
<td>4.3 - 5.2</td>
<td>10.3 - 11.2</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
<td>>1.7</td>
<td>Falling quickly</td>
<td><4.3</td>
<td><10.3</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
<td>>2.5</td>
<td>Falling rapidly</td>
<td><3.5</td>
<td><9.5</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
<td>0.8 - 1.7</td>
<td>Rising slowly</td>
<td>6.8 - 7.7</td>
<td>12.8 - 13.7</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
<td>1.7 - 2.5</td>
<td>Rising quickly</td>
<td>>7.7</td>
<td>>13.7</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
<td>>2.5</td>
<td>Rising rapidly</td>
<td>>8.5</td>
<td>>14.5</td>
</tr>
</tbody>
</table>
How much carbohydrate for 45 minutes of football?

- Blood Glucose 6.0 mmol/l
The BCH CGM Calculator

Example
Monitoring

- Dexcom Clarity
- Libre Software
- Diasend CGM and insulin data - All but Medtronic
- CareLink Personal & Pro
- Telephone clinic
- Skype style clinic
- Teach the patients how to use the algorithms for self-management
What I was hoping?

- Know your types of exercise
- Know your insulin reductions
- Know your CGM arrows ROC
- Know advice that increases CGM accuracy during exercise
- Give plans according to 6 key questions – Standardise!
- Review, adapt, improve
References Exercise

- Yardley & Sigal (2015) Exercise Strategies for Hypoglycemia Prevention in Individuals With Type 1 Diabetes. DOI: 10.2337/diaspect.28.1.32
References CGM

• Danne et al – CGM Concencuses from ATTD - *Diabetes Care* 2017;40:1631–1640 | https://doi.org/10.2337/dc17-1600

